

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME						
CENTRE NUMBER		CANDIDATE NUMBER				
CHEMISTRY			0620/21			
Paper 2		Oct	ober/November 2010			
			1 hour 15 minutes			
Candidates ans	wer on the Question Paper.					
No Additional M	No Additional Materials are required.					

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

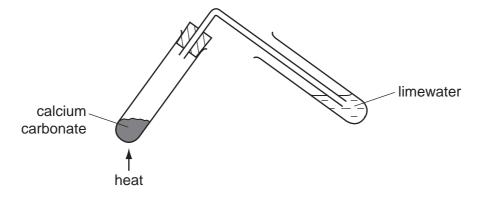
The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 17 printed pages and 3 blank pages.

1 The diagram below shows the elements in a period of the Periodic Table.

Li	Ве	В	С	N	O	F	Ne


(a)	To	which period	of the Periodic	Table do these eler	nents belong	j ?		
						[1]		
(b)		•	•	only the elements sl e, more than once o		diagram.		
	Wri	te down the s	symbol for the e	lement which				
	(i)	has six electrons in its outer shell.						
	(ii)	is a halogen	is a halogen.					
	(iii)	is a metal which reacts rapidly with cold water.						
	(iv)	has two form	ns, graphite and	d diamond.				
	(v)	is in Group	II of the Periodic	c Table.				
	(vi)	makes up a	bout 80% of the	e air.		[6]		
(c)	Cor	mplete the fol	llowing sentenc	e using words from	the list belo	W.		
	а	itoms	electrons	molecules	neutrons	protons		
	The	·	of the	elements in the Pe	eriodic Table	are arranged in order of		
	incr	easing numb	er of			[2]		
						[Total: 9]		

© UCLES 2010 0620/21/O/N/10

For Examiner's Use **2** Calcium carbonate was heated strongly in a test-tube. The gas given off was bubbled through limewater.

[1]

(a) What type of chemical reaction occurs when calcium carbonate is heated strongly?Put a ring around the correct answer.

hydration

neutralisation

oxidation

thermal decomposition

(b) (i) State the name of the gas given off when calcium carbonate is heated strongly.

[1]

(ii) State the colour change of the limewater.

[1]

(c) The product remaining in the test-tube is calcium oxide.

(i) Calcium oxide is used in steelmaking.

Describe how and why calcium oxide is used in making steel.

[2]

(ii) Steel is an alloy. What do you understand by the term alloy?

For Examiner's Use

4

(iii)	Give one other use of calcium oxide.
	[1]
(iv)	Complete the symbol equation for the reaction of calcium oxide with hydrochloric acid.
	CaO +HC $l \rightarrow CaCl_2 +$ [2]
(v)	State the chemical name of the compound ${\rm CaC} l_2$.
	[1]
	[Total: 10]

Examiner's Use

Helium and argon are noble gases. 3 (a) State one use of helium. **(b)** The atomic structures of helium and argon are shown below. helium argon (i) State the name of the central part of the atom, labelled X. (ii) Which statement about helium and argon is correct? Tick one box. Argon has an incomplete inner shell of electrons. An atom of argon has 16 electrons. Helium has a complete outer shell of electrons. Helium has an incomplete outer shell of electrons. [1] (iii) How many protons are there in an atom of argon? (iv) The symbol for a particular isotope of helium is written as ⁴₂He. Write a similar symbol for the isotope of argon which has 16 neutrons.

[1]

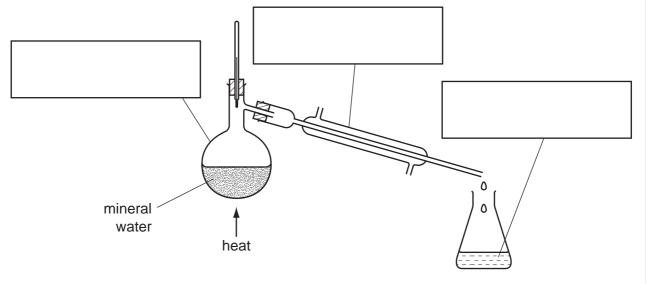
	0						
	(c) Argon is a liquid at a temperature of -188 °C. Complete the diagram below to show how the atoms of argon are arranged at -188 °C.						
represents one atom	of argon.						
		I					
		[2]					

For Examiner's Use

[Total: 7]

4 The table shows the mass of some ions present in a 500 cm³ bottle of mineral water.

For Examiner's Use

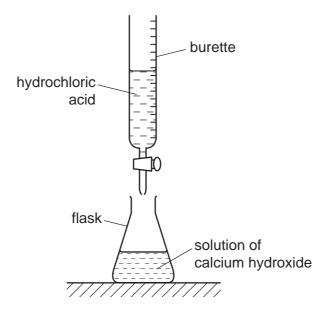

name of ion	symbol	mass of ion / mg
calcium	Ca ²⁺	40.5
	C1⁻	8.1
magnesium	Mg ²⁺	11.6
nitrate	NO ₃ -	2.4
potassium	K ⁺	0.9
	SO ₄ ²⁻	6.4

			- 4		1
(a)	Sta	te the name of the following ions.			
	Cl-				
	SO	2-			
(b)	Cal	culate the mass of magnesium ion	ns in 100 c	m ³ of this mine	eral water.
(c)	(i)	Describe a test for nitrate ions.			
	(ii)	The gas produced in this test turn State the name of this gas.	ns damp re	ed litmus pape	r blue.

(d) The apparatus shown is used to get pure water from impure mineral water.

[Total: 12]

(1)	Complete the diagram by putting the correct labels in the three boxes.	[3]
(ii)	Describe how this apparatus separates pure water from dissolved ionic solids.	
		[2]
(iii)	Water purity is important in everyday life. Describe one other area of everyday life where purity of substances is important	t.


9

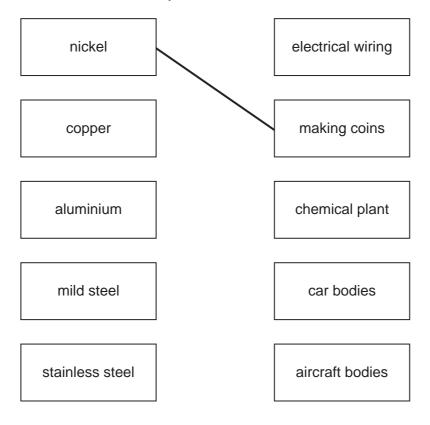
5

A soluti	on of calcium hydr	oxide in water i	s alkaline.		Fo Exami Us
	ich one of the pH a ring around the				
	pH 3	pH 6	рН 7	pH 11	[1]
	ich of the following k one box.	is the commo	n name for calc	ium hydroxide?	
		cement			
		limestone			
		quicklime			
		slaked lim	е		[1]
(c) Sor	me farmers use ca	lcium hydroxide	e to control soil	acidity.	
(i)	Why is it importa	nt to control soi	I acidity?		
					[1]
(ii)	Acid rain can cau Describe how aci				
					[3]
(d) Cal	cium hydroxide re	acts with hydro	chloric acid.		
	calcium hydroxid	e + hydrochlo	ric acid $ ightarrow$ cal	cium chloride + wate	ır
(i)	State the name of	f this type of ch	nemical reaction	1.	
					[1]

(ii) A dilute solution of calcium hydroxide can be titrated with hydrochloric acid using the apparatus shown.

For Examiner's Use

Describe now you would	a carry out this titr	ation.	
			 [3]


[Total: 10]

Examiner's Use

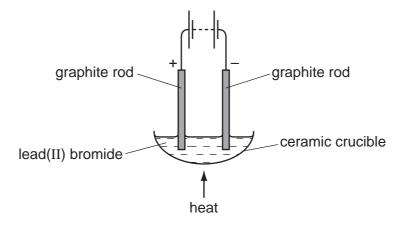
		n is extracted from its ore by reduction with carbon. Aluminium is extracted from its ore by extrolysis.						
(a	a) (i)	an ore of aluminium.						
	(ii)	What do you understand by the term <i>reduction</i> ?						
	(iii)	Suggest why alum	Suggest why aluminium is not extracted from its ore by reduction with carbon. [1]					
(I	•	e table gives informa n carbon.	ation about the reduction of four different metal oxides by heating					
		metal oxide	reduction conditions					
		lead(II) oxide	reduced very easily using a Bunsen burner					
	r	magnesium oxide	reduced with difficulty in a furnace above 2000 °C					
		nickel(II) oxide	reduced very easily in a furnace above 680 °C					
		zinc oxide	reduced fairly easily in a furnace above 1200 °C					
((c) Zine	c powder reacts with speed of reaction duced per minute.	n can be followed by measuring the volume of hydrogen gas					
	Wh	hat happens to the volume of gas produced per minute when						
	(i)	large lumps of zinc are used instead of zinc powder?						
	(ii)	the reaction is carr	ied out at a higher temperature?					
			[1]					

(d) Match the metals on the left with their uses on the right. The first one has been done for you.

For Examiner's Use

[4]

[Total: 11]

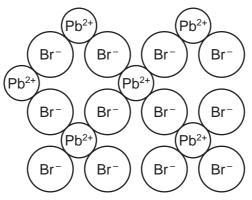

Examiner's Use

7	Eth	Ethene, C ₂ H ₄ , is manufactured by cracking petroleum fractions.						
	(a)	(i)	What do you understand by the term petroleum fraction?					
			[1]					
		(ii)	Complete the equation for the manufacture of ethene from dodecane, $C_{12}H_{26}$.					
			$C_{12}H_{26} \rightarrow C_2H_4 + \dots$ [1]					
	(b)		fractions obtained from the distillation of petroleum are refinery gas and gasoline. the one use of each of these fractions.					
		refir	nery gas					
		gas	oline[2]					
	(c)		ene is an unsaturated hydrocarbon. at do you understand by the following terms?					
		uns	aturated					
		hyd	rocarbon[2]					
	(d)	Eth	ene is used to make ethanol.					
		(i)	Which of these reactions is used to make ethanol from ethene? Tick one box.					
			catalytic addition of steam					
			fermentation					
			oxidation using oxygen					
			reduction using hydrogen					
			[1]					

(ii)	(ii) Draw the structure of ethanol showing all atoms and bonds.					
				[2	2]	
Cor	ene is used to make poly(emplete the following senten words from the list below.		eaction.			
addit	ions carbohydrates	catalysts	monomers	polymers		
The	The ethene molecules which join to form poly(ethene) are the					
The	poly(ethene) molecules fo	rmed are		[2	2]	
				[Total: 1	1]	

8 Lead(II) bromide can be electrolysed using the apparatus shown below.

For Examiner's Use



(a) Choose **one** word from the list below which describes the graphite rods. Put a ring around the correct answer.

	cations	electrodes	electrons	insulate	ors	metals	[1]
(b)	State the na	me of the products	s formed during t	his electrol	ysis at		
	the negative	graphite rod					
	the positive	graphite rod					. [2]
(c)	Which of the	e following conduc xes.	t electricity?				
		cera	mic crucible				
		grap	hite rod				
		molte	en lead(II) bromi	de			
		solid	lead(II) bromide				[0]
							[2]

(d) The structure of lead(II) bromide is shown below.

For Examiner's Use

	Write the simplest formula for lead(II) bromide.					
		[1]				
(e)	(e) Lead(II) bromide is formed as a precipitate when aqueous solutions of lead(II) n and potassium bromide are mixed.					
	(i)	What do you understand by the term precipitate?				
		[1]				
	(ii)	The formula of lead(II) nitrate is $Pb(NO_3)_2$. State the number of different types of atom present in this formula.				
		[1]				
	(iii)	State the total number of oxygen atoms present in this formula.				
		[1]				
	(iv)	Lead compounds are pollutants in the air. State one harmful effect of lead compounds on health.				
		[1]				
		[Total: 10]				

BLANK PAGE

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	Neon 10 Neon 40 Argon 18	84 K rypton 36	131 Xe Xeron	Rn Radon 86		175 Lu Lutetium 71	Lr Lawrendum 103		
			19 Fluorine 9 35.5 C1	80 Br Bromine 35	127 I lodine	At Astatine 85		173 Yb Ytterbium 70	Nobelium 102		
	I>		16 Oxygen 8 32 Suffur 16	Selenium	128 Te Tellurium	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101		
	>		Nitrogen 7 31 9 Phosphorus 15	AS Arsenic	Sb Antimony 51	209 Bis Bismuth		167 Er Erbium 68	Fm Fermium 100		
	2		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium 32	Sn In 150	207 Pb Lead		165 Ho Holmium 67	Es Einsteinium 99		
	Ш	≡			11 B Boron 5 27 A 1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T1 Thallium		162 Dy Dysprosium 66	
				65 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	BK Berkelium 97		
				64 Copper	108 Ag Silver 47	197 Au Gold 79		157 Gd Gadolinium 64	Cm Curium		
Group				59 Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium		
Gr				59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium		150 Sm Samarium 62			
		T Hydrogen		56 Fe Iron	Ruthenium	190 OS Osmium 76		Pm Promethium 61	Neptunium 93		
				Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Neodymium 60			
				Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium 91		
						51 V Vanadium 23	Nobium Nation	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium
				48 二 Titanium	91 Zr Zirconium 40	178 # Hafnium 72			nic mass bol nic) number		
				Scandium 21	89 Yttrium 39	139 La Lanthanum 57 *	Actinium Assessment	series series	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 		
	=		Beryllium 4 24 Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series 190-103 Actinoid series	ж ж		
	_		7	39 K Potassium	Rubidium 37	133 Cs Caesium 55	Fr Francium 87	*58-71 L	Key		

.....

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.